最大期望算法 

最大期望演算法Expectation-maximization algorithm,又譯期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。

统计计算中,最大期望(EM)算法是在概率模型中寻找参数最大似然估计或者最大后验估计算法,其中概率模型依赖于无法观测的隐变量。最大期望算法经常用在机器学习计算机视觉数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值。M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行。




取材自維基百科 - 中文時事百科