氦閃 

低質量恆星在不同階段的核融合反應。

氦閃是低質量恆星(0.8~2.0太陽質量)在紅巨星階段非常短暫的熱失控核融合,大量的經由3氦過程成為 [1]。預測太陽在演化成紅巨星階段時,將在離開主序帶12億年後經歷氦閃。另一種更為罕見的熱失控氫融合過程也可能發生在白矮星表面發生,叫作「吸積」。

低質量恆星不能產生足夠的重力壓力啟動正常的氦融合。當核心中的氫耗盡後,留在核心的氦會被壓實成簡併態物質,以量子力學壓力支撐,而不是熱壓力支撐,來對抗重力塌縮;這使核心的密度和溫度持續增加。當溫度達到一億K,就有足夠的熱,導致氦融合(或氦燃燒)在核心進行。然而,簡併態物質的一種基本性質是在熱壓力變得非常高,超過簡併壓力之前,溫度的變化不會產生體積的變化。在主序星階段,恆星以熱膨脹調節核心的溫度,但在簡併態物質的核心沒有這種機制。氦融合增加了溫度,從而增加了核融合的速率,進而使反應中的溫度失去控制,形成熱失控的核反應。這產生非常快速的氦融合,但只持續了幾分鐘,產生一個非常強烈的閃光。短暫的時間內釋放出能量的功率相當於整個銀河系的功率。

在正常狀態下,低質量恆星的巨大能量釋放,會導致核心的大部分脫離簡併態,從而能夠因熱而膨脹。然而,消耗的能量與氦閃釋放的總能量一樣多,而且任何多餘能量都會被外層吸收。因此,氦閃大多無法經由觀測探測到,而只能經由天體物理模型描述。核心在膨脹之後開始冷卻,大約只要經歷10,000年的時間,光度和半徑都將只有原先的2%。據估計,電子簡併態的氦核心質量約為恆星質量的40%,而核心的6%被轉化成碳[2]

  1. ^ Chapter 9: Post-main sequence evolution through helium burning (PDF). [2015-07-12]. (原始内容 (PDF)存档于2014-10-13). 
  2. ^ Taylor, David. The End Of The Sun. North Western. [2015-07-12]. (原始内容存档于2019-05-22). 



取材自維基百科 - 中文時事百科