量子力学 

氫原子中電子在不同能階的波函數。 量子力學無法預測粒子在空間中的確切位置,只能預測在不同位置找到它的機率[1] 。較亮的區域代表找到電子的機率較高。
1927年第五次索尔维会议,此次會議主題為「電子光子」,世界上最主要的物理學家聚集在一起討論新近表述的量子理論

量子力学(英語:Quantum mechanics)是物理學的分支學科。它描述原子尺度及原子尺度以下的自然行為[2]:1.1。 它是所有量子物理學的基礎,包括量子化學量子場論量子技術、和量子信息科学

量子力学与相对论一起被认为是现代物理学的两大基本支柱。19世紀末,人們發現舊有的經典理論並沒有辦法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除了透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。

量子理论的重要应用包括宇宙學量子化学量子光学量子计算超导磁体发光二极管激光器晶体管半导体微处理器等。

愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。[3]:86[a]

量子力學逐漸從理論中興起,用來解釋與經典物理學不相符的觀測結果,例如馬克斯·普朗克在1900年解決黑體輻射問題,以及阿爾伯特·愛因斯坦1905年論文中能量與頻率的對應關係,該論文解釋了光电效应影響。 這些理解微觀現象的早期嘗試,現在被稱為“舊量子論”,導致尼爾斯·玻爾歐文·薛定諤維爾納·海森堡馬克斯·玻恩保羅·狄拉克等人在1920年代中期全面發展了量子力學。 現代理論是用各種專門發展的數學形式體系來表達的。 其中之一,稱為波函數的數學實體以機率幅的形式提供有關粒子能量、動量和其他物理特性的測量結果的資訊。

  1. ^ Born, M. Zur Quantenmechanik der Stoßvorgänge [On the Quantum Mechanics of Collision Processes]. Zeitschrift für Physik. 1926, 37 (12): 863–867. Bibcode:1926ZPhy...37..863B. S2CID 119896026. doi:10.1007/BF01397477. 
  2. ^ Feynman, Richard; Leighton, Robert; Sands, Matthew. The Feynman Lectures on Physics 3. California Institute of Technology. 1964 [19 December 2020]. ISBN 978-0201500646. 
  3. ^ 3.0 3.1 引证错误:没有为名为Kragh2002的参考文献提供内容


引证错误:页面中存在标签或{{efn}}模板,但没有找到相应的标签或{{notelist}}模板




取材自維基百科 - 中文時事百科