半导体 

三種導電性不同的材料比較,金屬價電帶導電帶之間沒有距離,因此電子(紅色實心圓圈)可以自由移動。絕緣體的能隙寬度最大,電子難以從價電帶躍遷至導電帶。半導體的能隙在兩者之間,電子較容易躍遷至導電帶中。

半導體(德語:Halbleiter, 英語:Semiconductor, 法語:Semi-conducteur)是一种电导率绝缘体导体之间的物质或材料。半导体在某个温度范围内,随温度升高而增加电荷载流子的浓度,使得电导率上升、电阻率下降;在绝对零度时,成为绝缘体。依有无加入掺杂剂,半导体可分为:本征半导体杂质半导体(n型半导体、p型半导体)。

电导率容易受控制的半导体,可作为資訊处理的元件材料。从科技或是经济发展的角度来看,半导体非常重要。很多电子产品,如電腦移动电话、数字录音机的核心单元都是利用半导体的电导率变化来处理資訊。常见的半导体材料有:第一代(另一種定義/說法:第一「類」)的,第二代(類)的砷化镓磷化銦,第三代(類)的氮化鎵氧化鋅氮化鋁碳化硅等;而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。

材料的导电性是由导带中含有的电子数量决定。当电子从价带获得能量而跳跃至导电带时,电子就可以在带间任意移动而导电。一般常见的金属材料其导电带与价电带之间的能隙非常小,在室温下电子很容易获得能量而跳跃至导电带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至导电带,所以无法导电。

一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。

半导体通过电子传导或電洞傳导的方式传输电流。电子传导的方式与铜线电流的流动类似,即在电场作用下高度电离原子将多余的电子向着负离子化程度比较低的方向传递。電洞导电则是指在正离子化的材料中,原子核外由于电子缺失形成的「空穴」,在电场作用下,空穴被少数的电子补入而造成空穴移动所形成的电流(一般称为正电流)。

材料中载流子(carrier)的数量对半导体的导电特性极为重要。这可以通过在半导体中有选择的加入其他「杂质」(IIIAVA族元素)来控制。如果我們在純矽中摻雜(doping)少許的砷或磷(最外層有5個電子),就會多出1個自由電子,這樣就形成n型半導體;如果我們在純矽中摻入少許的硼(最外層有3個電子),就反而少了1個電子,而形成一個電洞(hole),這樣就形成p型半導體(少了1個帶負電荷的原子,可視為多了1個正電荷)。

麻省理工学院官网首页2012年4月24日宣布: 唐爽崔瑟豪斯夫人 提出“唐-崔瑟豪斯理论” 构建狄拉克型半导体,其电子和空穴可以具有各种相对论相应,或可引领新型半导体芯片能源转换器件的研发。

普通半导体如砷化镓碳化硅等材料中的电子和空穴通常可以用非相对论性的抛物线型色散关系来描述其能量-动能关系英语Energy–momentum relation[1][2],而在最近研发的新型半导体中,包括由麻省理工学院唐爽崔瑟豪斯夫人提出的准狄拉克材料、半狄拉克材料等(唐-崔瑟豪斯理论[3][4][5], 电子和空穴可以具有不同的相对论效应。这些相对论性的新型半导体材料或可引领下一代计算机芯片能源装置的研发。

  1. ^ Charles Kittel. op. cit. 1996: 202. ISBN 978-0-471-11181-8. 
  2. ^ Green, M. A. Intrinsic concentration, effective densities of states, and effective mass in silicon. Journal of Applied Physics. 1990, 67 (6): 2944–2954. Bibcode:1990JAP....67.2944G. doi:10.1063/1.345414. 
  3. ^ New material shares many of graphene’s unusual properties. Thin films of bismuth-antimony have potential for new semiconductor chips, thermoelectric devices页面存档备份,存于互联网档案馆). MIT News Office (24 April 2012).
  4. ^ Tang, Shuang; Dresselhaus, Mildred. Constructing Anisotropic Single-Dirac-Cones in BiSb Thin Films. Nano Letters. 2012, 12 (4): 2021–2026. doi:10.1021/nl300064d. 
  5. ^ Tang, Shuang; Dresselhaus, Mildred. Constructing A Large Variety of Dirac-Cone Materials in the BiSb Thin Film System. Nanoscale. 2012, 4 (24): 7786–7790. doi:10.1039/C2NR32436A. 



取材自維基百科 - 中文時事百科