大地水准面 

EGM96英语EGM96[1]模型给出的全球大地水准面高分布图,红、蓝两色分别表示高于和低于椭球面

大地水准面(德語:Geoid)是指地球重力场[註 1]中,与处于自由静止状态的平均海水面相重合[3]:49或最为接近[4]:42重力等位面。这一概念最早由德国大地测量学家卡爾·弗里德里希·高斯1828年提出。当时,高斯以“地球的数学表面”[3]:73来指称与重力方向相垂直、且与静止的平均海水面相重合的几何表面[5]:4,并提出将其作为高程系统的基准面[6]:74。其后,高斯的学生利斯廷1873年创造出了“Geoid”一词,用以描述高斯所提出的数学表面。[7]

大地测量学中,大地水准面被视作是地球的物理形状和数学形状。[4]:2由于自然的地形表面形态过于复杂,大地测量学通常是将重力场中整体形状与地形表面最为接近的等位面作为地球的形状进行研究。[8]:226处于静力平衡状态下的平均海水面被视作是符合这一标准的重力等位面,这一假想的海水面不受潮汐风浪大气压的变化影响,仅在地球引力和因地球自转产生的离心惯性力的作用下保持平衡。[9][4]:41将该平均海水面所处的重力等位面延伸到陆地内部,形成的闭合曲面即为大地水准面,其所包围的形体又被称为大地体。[10]:29

1849年英国物理学家斯托克斯提出了计算大地水准面的斯托克斯方法,使大地水准面的形状能够通过其整个表面上的重力观测值确定。[10]:8但在传统的大地测量中,通过大范围的重力观测,以及对这些重力观测值进行积分而求得大地水准面的方式遇到了诸多困难。[8]:294-295随着20世纪中后期卫星重力测量等技术逐渐发展成熟,采用球谐级数表达的地球重力场模型逐渐成为了描述大地水准面的主要方式[11],全球尺度下的大地水准面也得以以分米级精度测定[12]莫洛坚斯基布耶哈马等大地测量学家,亦在斯托克斯方法的基础上提出了通过地面测量技术确定大地水准面的新方法。[5]:34

大地水准面是测量外业所依据的基准面,在测量学中具有重要地位。[13]在各类高程系统中,日常中称为海拔高程的正高系统是基于大地水准面建立的。[10]:42如何确定大地水准面的形状,是物理大地测量学研究的关键问题之一。[14][15][16]

  1. ^ WGS 84, N=M=180 Earth Gravitational Model. NGA: Office of Geomatics. National Geospatial-Intelligence Agency. [2016-12-17]. (原始内容存档于2020-08-08) (英语). 
  2. ^ gravitational force - 重力,引力. 國家教育研究院. [2020-04-16]. (原始内容存档于2017-07-08). 
  3. ^ 3.0 3.1 Gauss, Carl Friedrich. Bestimmung des Breitenunterschiedes zwischen den Sternwarten von Göttingen und Altona: durch Beobachtungen am Ramsdenschen Zenithsector. Bei Vandenhoeck und Ruprecht. 1828 [2020-04-06]. (原始内容存档于2020-08-21) (德语). 
  4. ^ 4.0 4.1 4.2 Torge, Wolfgang. Geodesy. Walter de Gruyter GmbH & Co KG. 2015-08-31 [2020-04-06]. ISBN 978-3-11-154268-3. (原始内容存档于2020-08-21) (英语). 
  5. ^ 5.0 5.1 Vanicek, Mr Petr; Christou, Nikolaos T. Geoid and its Geophysical Interpretations. CRC Press. 1993-10-18 [2020-04-06]. ISBN 978-0-8493-4227-1. (原始内容存档于2020-08-21) (英语). 
  6. ^ Freeden, Willi; Nashed, M. Zuhair. Handbook of Mathematical Geodesy: Functional Analytic and Potential Theoretic Methods. Birkhäuser. 2018-06-11 [2020-04-10]. ISBN 978-3-319-57181-2. (原始内容存档于2020-08-21) (英语). 
  7. ^ Johann B., Listing. Über unsere jetzige Kenntnis der Gestalt und Größe der Erde : Enth.: Neue geometrische und dynamische Constanten des Erdkörpers. Gottingen. 1873 (德语). 
  8. ^ 8.0 8.1 宁津生. 管泽霖 , 编. 地球形状及外部重力场. 测绘出版社. 1981: 154–293. 
  9. ^ GRACE - Gravity Recovery and Climate Experiment. www2.csr.utexas.edu. [2020-04-06]. (原始内容存档于2019-02-06). 
  10. ^ 10.0 10.1 10.2 孔祥元; 郭际明; 刘宗泉. 大地测量学基础. 武汉大学出版社. 2001. ISBN 978-7-30-707562-7. 
  11. ^ Geoid - The concept of the geoid. Encyclopedia Britannica. [2020-04-09]. (原始内容存档于2021-02-15) (英语). 
  12. ^ 宁津生; 王正涛. 地球重力场研究现状与进展. 测绘地理信息. 2013, (01): 1-7 [2020-04-07]. ISSN 1007-3817. doi:10.14188/j.2095-6045.2013.01.012. (原始内容存档于2020-08-21). 
  13. ^ 潘正风; 程效军; 成枢; 王腾军; 翟翊. 数字地形测量学. 武汉大学出版社. 2015-07-01. ISBN 978-7-307-15677-7. 
  14. ^ CHAPTER V PHYSICAL GEODESY. www.ngs.noaa.gov. [2020-04-06]. (原始内容存档于2020-08-08). 
  15. ^ Lanzano, Paolo (编). Chapter I Concepts of Physical Geodesy. International Geophysics. Deformations of an Elastic Earth 31. Academic Press. 1982-01-01: 1–40 [2020-04-06]. doi:10.1016/s0074-6142(08)60467-2. (原始内容存档于2020-08-08) (英语). 
  16. ^ Xiong Li; Hans-Jürgen Götze. GEOPHYSICS (PDF). web.archive.org. 2011-01-13 [2020-04-08]. 原始内容存档于2011-01-13. 


引证错误:页面中存在标签,但没有找到相应的标签




取材自維基百科 - 中文時事百科